The eight Project Euler problem - Largest Product in a Series - is stated as follows. The four adjacent digits in the 1000-digit number below that have the greatest product are 9 × 9 × 8 × 9 = 5832.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
fn char_to_u64(c: char) -> u64 {
// Convert the char to a digit in base 10.
c.to_digit(10)
// Return the value or default to 0.
.unwrap_or(0) as u64
}
fn product_of_string(s: &str) -> u64 {
// Returns an iterator over the chars.
s.chars()
// Convert chars to u64 and get their product.
.fold(1, |product, n| char_to_u64(n) * product)
}
fn largest_product_in_a_series(series: &str, len: usize) -> u64 {
// Iterate from 0 to the series length minus the length
// of the number of adjacent digits we are looking for.
(0..series.len() - (len - 1))
// Get the digits we are looking for as a string.
.map(|x| &series[x..x + len])
// Convert the chars to u64 and get their product.
.map(|x| product_of_string(x))
// Get the largest product.
.max()
// Return the value or default to 0.
.unwrap_or(0)
}
fn main() {
let l = 13;
let s = "73167176531330624919225119674426574742355349194934\
96983520312774506326239578318016984801869478851843\
85861560789112949495459501737958331952853208805511\
12540698747158523863050715693290963295227443043557\
66896648950445244523161731856403098711121722383113\
62229893423380308135336276614282806444486645238749\
30358907296290491560440772390713810515859307960866\
70172427121883998797908792274921901699720888093776\
65727333001053367881220235421809751254540594752243\
52584907711670556013604839586446706324415722155397\
53697817977846174064955149290862569321978468622482\
83972241375657056057490261407972968652414535100474\
82166370484403199890008895243450658541227588666881\
16427171479924442928230863465674813919123162824586\
17866458359124566529476545682848912883142607690042\
24219022671055626321111109370544217506941658960408\
07198403850962455444362981230987879927244284909188\
84580156166097919133875499200524063689912560717606\
05886116467109405077541002256983155200055935729725\
71636269561882670428252483600823257530420752963450";
println!(
"{} adjacent digits = {}",
l,
largest_product_in_a_series(s, l)
);
}